Cramps

A new study suggests that cramps during exercise have nothing to do with electrolytes or dehydration, but are simply due to muscle fatigue.8479719962_3208ac3c1e

For decades we have been told that cramps during long runs are due to dehydration and loss of electrolytes. It is tempting to think so indeed, as patients with disturbed electrolytes due to illness suffer from cramps. However, these patients are usually severely ill and have cramps all over their bodies. Runners on the other hand, typically have them in the working muscles and often only later in the race. Moreover, they might be tired but they are not ill!

Scientists now suspect that cramps in runners (or in any athlete) might be something different. Indeed, there is more and more evidence that cramps are due to muscular fatigue, and the latest study by Martin Hoffman and Kristin Stuempfle suggests this as well.

They studied 280 runners during a 161 km ultra-marathon by measuring their body weight before, during and after the race, and they determined their sodium and CK (= a measure of muscular damage) levels by a blood sample after the race. The runners also completed a questionnaire about cramping, “near” cramping (= controllable, not full blown), drinking strategies and the use of electrolyte supplements.

14% of the participants reported cramping, and 28% near cramping. There was no difference in changes in bodyweight or sodium levels between those suffering from cramping or near cramping and the others. Those who cramped or near cramped however, showed higher CK blood concentrations and were more likely to have suffered from them in the past.

The researchers concluded that cramping was associated with muscle damage, which confirms other studies suggesting that it is due to fatigue.

This is important for all of us, because if they are right, there is no need to take electrolyte supplements. It could then be more beneficial to review our training, build up our muscle strength and see if our technique needs improving.

References:

KW Braulick, KC Miller, JM Albrecht et al. Significant and serious dehydration does not affect skeletal muscle cramp threshold frequency. Br J Sports Med. 2013; 47(11): 710-4.

MD Hoffman and KJ Stuempfle. Muscle cramping during a 161 km ultra-marathon: comparison of characteristics of those with and without cramping. Sports Med Open. 2015; 1 (1):8.

MP Schwellnus, EW Denman and TD Noakes. Aetiology of skeletal muscle “cramps” during exercise: a novel hypothesis. J Sports Sci. 1997; 15(3):277-85.

MP Schwellnus. Cause of exercise associated muscle cramps (EAMC) — altered neuromuscular control, dehydration or electrolyte depletion? Br J Sports Med. 2009; 43(6):401-8.

 

Picture: photo credit: <ahref=”http://www.flickr.com/photos/25874444@N00/8479719962″>The Donadea 50KM Ultramarathon Race 2013</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-sa/2.0/”>(license)</a&gt;

Does beetroot juice work for you?

Drinking beetroot juice before a race has become very popular, as it can make you go faster. However, a new study suggests that beetroot juice will not help you if you are already very fit.2631746551_ba1338f5b7

Studies have shown that a single intake or a short term (3-6 days) supplementation of beetroot juice shortens your time on a time-trial event and allows you to tolerate high intensity exercise much better. This is because beetroot contains nitrates (NO3-).

Your body absorbs NO3- and secretes it into your saliva, where your mouth bacteria transform it into NO2-, which is then taken up by your stomach as you swallow. (That is why beetroot has no effect if you use antibacterial mouthwashes.) NO2- becomes NO in tissues which are in need of oxygen, such as working muscles.

NO dilates blood vessels and makes your body more efficient at using oxygen to produce energy. It also improves the contractibility of your muscle fibres.
This is great news, not only for athletes, but also for the elderly who have a reduced aerobic capacity, and for people suffering from hypertension as it will lower their blood pressure.
However, there is a problem. Most studies showing a benefit have been done on sedentary or moderately fit people. Studies on elite athletes on the other hand, are rather disappointing.

To try to understand this better, Simone Porcelli and her colleagues have studied the effect of beetroot juice on 21 young men of different aerobic fitness levels. The VO2 max values of the participants ranged from 28.2 ml/kg/min (sedentary people) to 81.7 ml/kg/min (elite level).
The researchers tested their fitness by a run to exhaustion, a series of 6-min sub-maximal runs on the treadmill, and a 3 km time trial. All the participants performed the tests twice, once after taking 500 ml/day beetroot juice for 6 days and once after drinking the same amount of a placebo for the same time.

There was an inverse relationship between the VO2max of the participants and the benefits of taking beetroot juice. In other words: the participants with the highest VO2max showed the least benefits, while those with the lowest VO2max benefitted most. The researchers also measured the blood levels of NO3- and NO2- of the participants, and noted that the fitter ones showed a smaller increase after drinking beetroot juice.

These results are not easy to explain, and Simone Porcelli and her colleagues have come up with 3 possibilities:

1) NO2- is mainly transformed into NO when tissues need oxygen. Elite athletes will have more blood vessels in their muscles due to many years of training, and it is therefore possible that the right conditions to form NO happen only rarely.

2) Athletes might take in much more nitrates with their normal diets, as they are likely to eat more than sedentary people. In this case the supplements would not matter anymore, and could just end up in their urine. Unfortunately, the researchers did not check the urine levels.

3) Our bodies can also make NO via a completely different pathway, without the need of any dietary NO3-. It is possible that many years of training have optimised this system and fine-tuned the athletes’ metabolism, making nitrate supplements superfluous.

The researchers noticed a higher NO3- and NO2- blood level in the fittest participants before taking any juice, which makes one of the two last possibilities (or both) more likely than the first one.

Whatever the reasons, if beetroot juice does not work for you, you should be happy!

photo credit: <a href=”http://www.flickr.com/photos/24987280@N00/2631746551″>Beetroot</a&gt; via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-sa/2.0/”>(license)</a&gt;

 

The best exercise for your health

Have you ever wondered which exercise would be best to keep you healthy as you get older? I guess the answer is “the one you like”, but Pedro Angel Latorre-Roman and his colleagues wanted to investigate this further and compared master long distance runners with athletes engaged in gym work and sedentary people.15308809285_249e075362

 

 

 

 

 

47 long distance runners and 49 bodybuilders from local clubs volunteered for the study, and were compared to 47 sedentary people. All the participants were male, and between 35 and 60 years old. They were divided in groups according to their age (35-40 year, 40-50 year and 50-60 year old).

The researchers calculated their BMI, measured their body fat percentage, and analysed their quality of life using a questionnaire. The participants performed countermovement jumps and had their hand grip measured to test their strength.

Unsurprisingly, the long distance runners as well as the bodybuilders maintained their strength much better throughout aging than the sedentary people, even though muscle mass was decreased in all the older participants compared to the younger ones. The runners showed healthier BMI values and body fat percentages, and scored better in the quality of life questionnaire than both other groups. However, they lost more muscle mass than the bodybuilders as they grew older.

This study confirms a previous study by Williams, which showed that running is much more effective in keeping your body fat percentage healthy than other sports. Williams compared the BMI and waist circumference of 33,374 runners with the kind and amount of exercise they were doing. Most runners do not only run, but are also engaged in a wide variety of different sports, such as cycling, walking, swimming… He noticed that those who ran more were leaner, even if the total amount of energy spent exercising was the same.

Both studies are off course observational, which means that they can only show an association between two findings. It does not mean that one leads to the other, as there might be a third factor which explains the association. For example, there is an association between lying in bed and dying, as most people die in bed, but this is explained by disease and injury.

It is also possible that lean people are more often tempted to take up running than other people.

The same could be true concerning the results of the quality of life questionnaire: are you happy because you are running, are you running because you are happy or is there another explanation?

References:

PA Latorre-Roman, JM Izquierdo-Sanchez, J Salas-Sanchez and F Garcia-Pinillos. Comparative Analysis between two models of active aging and its influence on body composition, strength and quality of life: long-distance runners versus bodybuilders practioners. Nutr Hosp. 2015; 31(4): 17-25.

PT Williams.  Non-exchangeability of running vs. other exercise in their association with adiposity, and its implications for public health recommendations. PLoSOne. 2012; 7(7): e36360. doi:10.1371/journal.pone0036360.Epub 2012 Jul 13.

photo credit: <ahref=”http://www.flickr.com/photos/60258437@N02/15308809285″>RAX_4087.jpg</a&gt; via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

Keep your teeth healthy to reduce your injury risk

5128567045_fca804fea6A study by Henny Solleveld on soccer players suggests that poor oral health increases the risk of sports injuries and muscle cramps. As soccer players run a lot during a match, these results are probably important for runners as well.

Sports injuries are common, not only between runners but also between soccer players.  The risk factors can be intrinsic or extrinsic in nature. The extrinsic factors include interactions between players, and the intrinsic ones comprise health, previous injury, age, fitness, stress, anxiety…In this study, Henny Solleveld and her colleagues show that oral health should also be included in the intrinsic factors.

They questioned 184 premier league and 31 elite junior soccer players about re-injuries, muscular cramps, oral health, age, player position and psychosocial factors (stress and anxiety).

They noticed that poor oral health was associated with cramps and all kinds of injuries, even if they controlled for age, player position, diet or stress and anxiety.

Of course, it is not because there is an association between two factors that one leads to the other. There might be a third factor that leads independently to poor oral health and injuries, or it might just be a coincidence.

However, it is possible, as theoretically there is a mechanism. Poor oral health leads to an increased amount of inflammatory factors in your blood which make your muscles more easily fatigued and increase oxidative stress. Muscular fatigue puts you at a higher risk of injury as you lose good technique and as your coordination deteriorates. It can also lead to cramps.

This study is based on questionnaires and, as we all know, participants can get the answers wrong. Moreover, it is only a small study. It would therefore be good to see it repeated on larger groups. In the meanwhile, it is good idea to see your dentist regularly!

Reference:

H Solleveld, A Goedhart and L Vanden Bossche. Associations between poor oral health and reinjuries in male elite soccer players: a cross-sectional self-report study. BMC Sports Science, Medicine and Rehabilitation 2015; 7:11. doi:10.1186/s13102-015-0004-y.

Photo: photo credit: <a href=”http://www.flickr.com/photos/45424026@N07/5128567045″>Dame N’Doye – The Flying Shot</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a

Exercise and mortality

5797534694_a36e9d8b0dExercising helps you to live longer, whatever the amount you are doing. If you exercise a little, your risk of an early death drops and if you exercise a lot, it drops even more. This is the conclusion of a study published on April 6th in the JAMA.

If you plot “benefits” against “dose” on a graph, most biological systems will show an inverted “U”. Take food for example: if you eat too little, you might die, but if you eat too much, you might also die. If you take a medicine, you have to take the right amount, as taking not enough will have no effect and taking too much is toxic.

Is the same true for exercise? Everybody agrees that you need a minimum of exercise to stay healthy, but some people believe that too much is bad for you. The recent cases of sudden deaths during competitions and the findings of heart rhythm disturbances in older endurance athletes have fuelled the debate.

To answer this question, Hannah Arem and her colleagues have looked at the mortality rates and physical activity levels of 661 137 men and women over 14.2 years.

Sure enough, they showed that having the recommended amount of exercise (a minimum of 150 min of moderate intensity, or 75 min of vigorous intensity endurance exercise per week) resulted in a 30% lower mortality risk compared to not exercising at all. However, any exercise is much better than none, as people who did less than the recommended amount already reduced their mortality risk by about 20%.

Working out more is even better, and exercising 2 to 3 times the recommended amount reduces your risk by 37%, while doing 3 to 5 times more leads to a 39% reduction.

The researchers noticed that those who exercise 10 times or more the recommended amount did not reduce their risk any further, but they could not observe any evidence of harm either.

Can I believe this?

This is very large study, which makes it trustworthy. Moreover, the results are the same for both genders and all BMI ranges.

On the other hand, it is based on questionnaires, and participants can easily over- or underestimate what they are doing or change their habits. However, most population studies about exercise and mortality suffer from these same limitations.

If Hannah Arem is right, concerning exercise, there cannot be too much of a good thing. Even though I have never met anybody running marathons or participating in triathlons for health reasons only, it is good to know we are not harming our bodies.

Keep going, but make sure that you avoid overtraining and injuries!

References

Arem H, Moore SC, Patel A et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med 2015; DOI:10.1001/jamainternmed.2015.0533. (Abstract)

Photo

photo credit: <a href=”http://www.flickr.com/photos/57389319@N00/5797534694″>IMG_3934 -1</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

“Aerobic” and “anaerobic” exercise are misnomers

1673932398_5b4211ff72Most people still use the terms “aerobic” and “anaerobic” exercise to name intensity levels, referring to the way your body produces the required energy. However, the way you produce energy is one big continuous chain of reactions, and categorizing exercise in this way can lead to misunderstandings.

In an article in March 2015, Kamir Chamari and Johnny Padulo suggest using the terms “explosive efforts”, “high intensity efforts” and “endurance intensity efforts”.

Energy production: a complex chain of reactions

When you exercise, your body transforms glycogen, glucose, fats or some proteins into a specialised molecule called ATP (adenosine triphosphate), which can then be used by your muscle fibres.

There is some ATP available for immediate use to perform very intensive bouts of exercise, e.g. sprinting, which we should call “explosive efforts”.  After about 6 sec however, it is gone and your body therefore immediately starts topping it up.

Glycogen or glucose is first broken down in the cytoplasm of the cells into pyruvic acid, producing about 3 molecules of ATP. This might not sound as very much, but the system is quick. It does not need any oxygen, even if oxygen is available, and it is therefore often called “anaerobic”. It is everything you need for short, intense bouts of exercise which Chamari and Padulo suggest calling “high intensity efforts”.

Pyruvic acid is then used by the mitochondria of your cells to produce about 32 molecules of ATP in a complex series of reactions. This part of the energy production chain is very productive but it is rather slow. As it requires oxygen, it is often called “aerobic” and the exercise intensity at which you rely most on it is “endurance intensity exercise”.

The bottle neck between high intensity and endurance intensity levels

As the first part of the chain is fast (up to pyruvic acid, without the need for oxygen) and the second slow, there will be a bottle neck between the two of them. If you go harder, the bottle neck will become bigger, and more of your energy will have to come from the first “anaerobic” part of the chain, even if there is plenty of oxygen available.13191313253_05274951ac

Whatever the intensity you are exercising at, you will always be using energy from both parts of the chain. The relative amounts will differ, obviously, but will be determined by the intensity of the effort and not by the presence or absence of oxygen. Labelling a workout as “aerobic” or “anaerobic” is therefore incorrect, and can lead to confusing and misunderstandings.

Lactic acid

If you are going hard, pyruvic acid will be accumulating in your cells due to the bottle neck. It changes then into lactic acid and moves out of the cell. As lactic acid can very easily change back into pyruvic acid, which can used to produce a lot of energy, it is eagerly taken up by other tissues. It is therefore not a waste product at all, but a very important molecule.

However, if you produce more lactic acid than your tissues can take up, the amount in your blood will increase. Your brain uses this rise as a signal that you are going a bit too hard and it will slow you down by making your muscles ache.

As you can have this feeling even if you are doing an endurance workout, it is clear that you are getting energy via every part of the chain.

References:

Chamari K and Padulo J. “Aerobic” and “anaerobic” terms used in exercise physiology: a critical terminology reflection. Sports Medicine- Open.  2015; 1:9. doi: 10.1186/s40798-015-0012-1.

Willmore JH, Costill DL and Kenney W L. Physiology of sports and exercise. Ed: Human Kinetics 2008.

Photo’s:

photo credit: <a href=”http://www.flickr.com/photos/33442021@N00/1673932398″>spitting blood</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

photo credit: <a href=”http://www.flickr.com/photos/65483692@N06/13191313253″>Limassol Marathon, #Cyprus 2014</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-nd/2.0/”>(license)</a&gt;

Do you need to exercise if you are healthy?

14022436150_97d48f6579Exercise improves your health, even if you are fit.

What is the importance of exercise if you are young, fit and healthy? Researchers in Finland have tried to answer this question by studying male identical twins. As these brothers are identical at the gene sequence level, any difference should be due to lifestyle factors.

They recruited 10 healthy male identical twins between 32 and 36 years old, of which only one brother had been exercising regularly for the last three years. They then measured their body weight and fat percentages, assessed their glucose levels and insulin sensitivity, and calculated the volume of their brains’ grey matter using magnetic resonance imaging.

The active twins had a higher VO2max and less visceral fat than their sedentary brothers, even though their body weight was not that different. Their glucose levels were lower and their insulin sensitivity* was higher. They also had a higher volume of grey matter in those areas associated with motor control.

The researchers concluded that even among healthy young adults exercise makes a difference. This is important, as lower fitness levels, more visceral fat and poor glucose metabolism are associated with chronic diseases later in life. Obviously, the negative effects of being sedentary begin early!

You might wonder if you have taken up exercise because you have a more favourable genetic profile than sedentary people. If so, you would be healthier whatever you do. This study suggests that this is not the case and that exercise makes a real difference, since identical twins should have the same genetic profile. This does not mean that genes do not matter. They are very important indeed, but you can influence them by your lifestyle.

This is only a small study. It would be great to confirm it with larger ones, but it must be very difficult to find a large group of identical twins of the same sex and age group with different exercise habits.

* Insulin sensitivity = how sensitive the body is to insulin stimulation. Low sensitivity is associated with higher risk of diabetes type 2.

References:

Rottensteiner M, Leskinen T, Niskanen E et al. Physical acivity, fitness, glucose homeostasis, and brain morphology in twins. Med Sci Sports Exerc. 2015; 47(3): 509-518.

Picture:

photo credit: <a href=”http://www.flickr.com/photos/96552203@N00/14022436150″>DSC_1591</a&gt; via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

Should you take extra salt during endurance exercise?

A study by Elizabeth Earhart suggests that taking in extra salt during endurance exercise does not influence your performances. As too much salt can be bad for your health, you might consider abandoning the supplements.5797534694_a36e9d8b0d

Dehydrating too much during exercise is not good for you, as it makes it more difficult to sweat enough to keep your core temperature down. It also means that you have less plasma volume to pump around your body. You have therefore to make sure that you drink enough.

On the other hand, it is important that you keep the amount of electrolytes per litre plasma within normal limits. In practice this means that the concentration of sodium in your blood needs to remain normal. Drinking too much can lead to too little sodium in your blood (hyponatremia), which is usually fatal.

You would therefore conclude that the best you can do is to take sodium supplements with your drinks, but is that true? Unfortunately, scientific studies show contradictory results.

No effect at all

In the latest study, Elizabeth Earhart and her colleagues made 11 trained endurance athletes run or cycle for 2 hours on 2 different days. During one of the workouts the athletes received 1800mg sodium with their water and during the other one none. The researchers could not notice any difference in perceived effort, performance or thermoregulation between the 2 workouts. Two of the athletes however, reported nausea after taking the sodium supplements, and a third one suffered from cramps in the evening after the workout with the supplements.

Of course, this is only a small study and it should be repeated to make sure the results are correct indeed. It is true that other studies have shown different results. The problem is that all those studies use slightly different protocols, which makes it very difficult to compare them.

In a similar study, Cosgrove6062346574_71c0781732 could not find any effect of sodium supplements, but he noted that the athletes were thirstier when using supplements. Although on average there was no difference between the workouts performed with supplements and those without, he observed that some athletes performed better using the supplements. He thought that this might be due to their training status, to the amount of sodium they had from their regular diet or to small differences in metabolism.

The safest solution

Drinking to your thirst is still the safest way to avoid dehydration and hyponatremia. Do not forget that you will get plenty of electrolytes from food.

As your unconscious brain is determined to keep you safe, it will send you the right signal –as long as you are normally healthy- by making you thirsty. It is therefore a good idea to listen to it!

References:

Earhart EL, Weiss EP, Rahman R and Kelly PV. Effects of oral sodium supplementation on indices of thermoregulation in trained, endurance athletes. J Sports Sci Med 2015; 14(1): 172. eCollection 2015.

Cosgrove SD and Black KE. Sodium supplementation has no effect on endurance performance during a cycling time-trial in cool conditions: a randomised cross-over trial. J Int Soc Sports Nutr 2013; 10:30. doi: 10.1186/1550-2783-10-30. eCollection 2013.

Cosgrove SD, Love TD and Black KE. Sodium supplementation during prolonged exercise: effects on plasma sodium and performance. OA Sports Medicine 2013; 1(2):12.

Photo’s

photo credit: <a href=”http://www.flickr.com/photos/57389319@N00/5797534694″>IMG_3934 -1</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

photo credit: <a href=”http://www.flickr.com/photos/25874444@N00/6062346574″>Frank Duffy 2011 Ten Mile Road race in the Phoneix Park – Saturday 20th of August 2011</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-sa/2.0/”>(license)</a&gt;

Keep running to walk better

A number of physiological parameters, such as VO2max and lactate threshold, describe your ability to run well. Most of them decline as you get older, except for running economy. Running economy is the energy you spend to run at a given speed, in other words: it corresponds to what it costs your metabolism to make the movements.medium_14682933349

Studies have shown that older runners are just as economical as younger ones. Walking economy on the other hand becomes worse in people who use to walk for exercise just as it does in sedentary people. A paper published in PloSOne by Justus Ortega now suggests that running will allow you to keep the cost of walking down.

This is much more important than you might think because keeping the ability to walk easily is essential if you want to live independently in your old age. Moreover, there is a correlation between losing this ability and getting ill, showing how important it is for your life expectancy.

To find out what you can do to keep the cost of walking down, Justus Ortega and his colleagues compared the cost of walking of 15 older walkers with that of 15 older runners. (You can read the article for free if you want to know how they did it exactly.) They showed that the older runners’ cost of walking was much better than the older walkers’ and, of course, than sedentary older people’s. It was just as good as that of young sedentary adults.

What influences running/walking economy?

Your muscles and tendons have to be able to store and release elastic energy, they have to fire at the right moment and work together effectively to support your body weight, do the work, maintain your balance and allow the leg swing.

Your economy is also determined by the ability of your muscles to produce energy, such as the number and efficiency of your mitochondria and their enzymes.

Why older runners keep their walking cost low is not clear, but Justus Ortega and his colleagues suggest that the intensity of exercise is crucial. They think you might have to exercise harder, longer or more frequently if you want to keep your cost down. This would confirm a previous study, where elderly women performing high intensity walking workouts improved their economy by about 20%.  On the other hand, a year-long fitness program including strength and balance exercises did not have any effect.

Can I believe this?

This is an observational study, and just like any other observational study it does not prove cause and effect. In other words: the runners might have a better walking economy for reasons not related to running at all. Maybe they have become runners instead of walkers because their exercise economy was better due to a more favourable genetic profile.

Furthermore, this is a small study, and the results might simply be due to chance –or bad luck- while in de general population there is no difference.

It is clear that we need further studies, but in the meanwhile it is a good idea to have a healthy balance between high and low intensity exercise.

Disclaimer: this article is for general information only, and does not replace medical advice. It cannot be used to diagnose or guide treatment. If you have any concerns or questions, you should talk to a qualified health provider

References:

Elbaz A, Sabia S, Brunner E et al. Association of walking speed in late midlife with mortality: results from the Whitehall II cohort study. Age (Dordr) 2013; 35(3): 943-52.

Ortega J, Beck O and Roby J. Running for exercise mitigates age-related deterioration of walking economy. PloSOne 2014; doi: 10.1371/journal.pone. 0113471. (accessed: 28/12/2014).

Milan OS, Thom JM, Ardigo LP et al. Effect of a 12-month physical conditioning programme on the metabolic cost of walking in healthy older adults. Eur J Appl. Physiol. 2007; 100: 499-505.

Saunders PU, Pyne DB, Telford RD and Hawley JA. Factors influencing running economy in trained distance runners. Sports Med. 2004; 34(7):465-85.

Thomas E, De Vito G and Macaluso A. Speed training with body weight unloading improves walking energy cost and maximal speed in 75- to 85- year old healthy women. J Appl Physiol. 2007; 103(5): 1598-603.

photo credit: <a href=”https://www.flickr.com/photos/keith_tonks/14682933349/”>flashlight2012</a&gt; via <a href=”http://photopin.com”>photopin</a&gt; <a href=”http://creativecommons.org/licenses/by-nc/2.0/”>cc</a&gt;

A happy brain makes you run better

Fatigue during endurance exercise is a weird and complex phenomenon, and scientists are still discussing what influences it. Samuele Marcora’s group has just published an article in Frontiers in Human Neuroscience reporting two experiments studying the effect of visual cues related to happiness and motivation. They showed that such cues can make your unconscious brain think you are working out less hard than you actually are, and that therefore you will keep going for longer.medium_1734834072

Samuele Marcora’s theory about fatigue states that the moment you stop exercising is determined by perceived effort (how hard you think you are working) and potential motivation (the maximal effort you are happy to deliver). This means that you will stop when you are judging that the effort required has become larger than the effort you want to make. This theory is called the psychobiological model of endurance performance. To delay fatigue you could therefore do two things: make the effort seem less important, or increase your motivation.

Our unconscious brain takes in much more information than we realise, especially visually. Only a tiny amount of this information makes it to our conscious attention, but we process all the information unconsciously and it therefore influences our behaviour. To study the impact of the unconscious brain on perceived effort, the researchers therefore set up a study during which they could give participants subliminal visual cues.

In their first experiment 13 participants cycled for as long as they could (i.e. to exhaustion) while looking at a computer screen. They were shown happy or sad faces on a regular basis during the effort, but the images came and went so quickly (in 16 msec) that they did not realise they were seeing them. Every participant performed the experiment twice: once with happy and once with sad faces.

In the second experiment, a well trained competitive endurance athlete cycled 12 times to exhaustion while looking at a screen showing words extremely quickly. The words were encouraging (action, go, lively, energy) during 6 workouts and discouraging (stop, toil, sleep tired) during the other workouts.

In both experiments, the participants cycled significantly longer when exposed to happy faces or encouraging words, and rated the effort as less strenuous. Their mood was not different however, proving that the information had not reached their conscious attention.

Samuele Marcora and his team concluded that these experiments confirm their theory. They also think they provide evidence against the central governor theory of Tim Noakes.

The central governor theory states that your pace, and therefore your fatigue, is determined by your unconscious brain which has to make sure that you get safely over the finish line. According to this theory your pace will thus be determined by “calculations” of your brain based on signals from your body, (e.g. working muscles, glycogen reserves), the environment (temperature, altitude…), but also on messages from your central nervous system, such as motivation, encouragement, knowledge about the course, etc…If you brain is not sure that you will get there safely, it will slow you down –or even stop you- by making you feel tired and reducing the number of muscle fibres you can use.

I am not so sure that the experiments contradict the central governor theory. Is it not likely that subliminal cues would also influence how your brain determines what you can do? Please let us know what you think!

Whatever you think about these theories, it is a good idea to surround yourself by positive images and words, and to smile to every runner you meet.

photo credit: <a href=”https://www.flickr.com/photos/johnhayato/1734834072/”>john hayato</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”http://creativecommons.org/licenses/by-nc-nd/2.0/”>cc</a&gt;