Category Archives: cycling

Does beetroot juice work for you?

Drinking beetroot juice before a race has become very popular, as it can make you go faster. However, a new study suggests that beetroot juice will not help you if you are already very fit.2631746551_ba1338f5b7

Studies have shown that a single intake or a short term (3-6 days) supplementation of beetroot juice shortens your time on a time-trial event and allows you to tolerate high intensity exercise much better. This is because beetroot contains nitrates (NO3-).

Your body absorbs NO3- and secretes it into your saliva, where your mouth bacteria transform it into NO2-, which is then taken up by your stomach as you swallow. (That is why beetroot has no effect if you use antibacterial mouthwashes.) NO2- becomes NO in tissues which are in need of oxygen, such as working muscles.

NO dilates blood vessels and makes your body more efficient at using oxygen to produce energy. It also improves the contractibility of your muscle fibres.
This is great news, not only for athletes, but also for the elderly who have a reduced aerobic capacity, and for people suffering from hypertension as it will lower their blood pressure.
However, there is a problem. Most studies showing a benefit have been done on sedentary or moderately fit people. Studies on elite athletes on the other hand, are rather disappointing.

To try to understand this better, Simone Porcelli and her colleagues have studied the effect of beetroot juice on 21 young men of different aerobic fitness levels. The VO2 max values of the participants ranged from 28.2 ml/kg/min (sedentary people) to 81.7 ml/kg/min (elite level).
The researchers tested their fitness by a run to exhaustion, a series of 6-min sub-maximal runs on the treadmill, and a 3 km time trial. All the participants performed the tests twice, once after taking 500 ml/day beetroot juice for 6 days and once after drinking the same amount of a placebo for the same time.

There was an inverse relationship between the VO2max of the participants and the benefits of taking beetroot juice. In other words: the participants with the highest VO2max showed the least benefits, while those with the lowest VO2max benefitted most. The researchers also measured the blood levels of NO3- and NO2- of the participants, and noted that the fitter ones showed a smaller increase after drinking beetroot juice.

These results are not easy to explain, and Simone Porcelli and her colleagues have come up with 3 possibilities:

1) NO2- is mainly transformed into NO when tissues need oxygen. Elite athletes will have more blood vessels in their muscles due to many years of training, and it is therefore possible that the right conditions to form NO happen only rarely.

2) Athletes might take in much more nitrates with their normal diets, as they are likely to eat more than sedentary people. In this case the supplements would not matter anymore, and could just end up in their urine. Unfortunately, the researchers did not check the urine levels.

3) Our bodies can also make NO via a completely different pathway, without the need of any dietary NO3-. It is possible that many years of training have optimised this system and fine-tuned the athletes’ metabolism, making nitrate supplements superfluous.

The researchers noticed a higher NO3- and NO2- blood level in the fittest participants before taking any juice, which makes one of the two last possibilities (or both) more likely than the first one.

Whatever the reasons, if beetroot juice does not work for you, you should be happy!

photo credit: <a href=”http://www.flickr.com/photos/24987280@N00/2631746551″>Beetroot</a&gt; via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-sa/2.0/”>(license)</a&gt;

 

“Aerobic” and “anaerobic” exercise are misnomers

1673932398_5b4211ff72Most people still use the terms “aerobic” and “anaerobic” exercise to name intensity levels, referring to the way your body produces the required energy. However, the way you produce energy is one big continuous chain of reactions, and categorizing exercise in this way can lead to misunderstandings.

In an article in March 2015, Kamir Chamari and Johnny Padulo suggest using the terms “explosive efforts”, “high intensity efforts” and “endurance intensity efforts”.

Energy production: a complex chain of reactions

When you exercise, your body transforms glycogen, glucose, fats or some proteins into a specialised molecule called ATP (adenosine triphosphate), which can then be used by your muscle fibres.

There is some ATP available for immediate use to perform very intensive bouts of exercise, e.g. sprinting, which we should call “explosive efforts”.  After about 6 sec however, it is gone and your body therefore immediately starts topping it up.

Glycogen or glucose is first broken down in the cytoplasm of the cells into pyruvic acid, producing about 3 molecules of ATP. This might not sound as very much, but the system is quick. It does not need any oxygen, even if oxygen is available, and it is therefore often called “anaerobic”. It is everything you need for short, intense bouts of exercise which Chamari and Padulo suggest calling “high intensity efforts”.

Pyruvic acid is then used by the mitochondria of your cells to produce about 32 molecules of ATP in a complex series of reactions. This part of the energy production chain is very productive but it is rather slow. As it requires oxygen, it is often called “aerobic” and the exercise intensity at which you rely most on it is “endurance intensity exercise”.

The bottle neck between high intensity and endurance intensity levels

As the first part of the chain is fast (up to pyruvic acid, without the need for oxygen) and the second slow, there will be a bottle neck between the two of them. If you go harder, the bottle neck will become bigger, and more of your energy will have to come from the first “anaerobic” part of the chain, even if there is plenty of oxygen available.13191313253_05274951ac

Whatever the intensity you are exercising at, you will always be using energy from both parts of the chain. The relative amounts will differ, obviously, but will be determined by the intensity of the effort and not by the presence or absence of oxygen. Labelling a workout as “aerobic” or “anaerobic” is therefore incorrect, and can lead to confusing and misunderstandings.

Lactic acid

If you are going hard, pyruvic acid will be accumulating in your cells due to the bottle neck. It changes then into lactic acid and moves out of the cell. As lactic acid can very easily change back into pyruvic acid, which can used to produce a lot of energy, it is eagerly taken up by other tissues. It is therefore not a waste product at all, but a very important molecule.

However, if you produce more lactic acid than your tissues can take up, the amount in your blood will increase. Your brain uses this rise as a signal that you are going a bit too hard and it will slow you down by making your muscles ache.

As you can have this feeling even if you are doing an endurance workout, it is clear that you are getting energy via every part of the chain.

References:

Chamari K and Padulo J. “Aerobic” and “anaerobic” terms used in exercise physiology: a critical terminology reflection. Sports Medicine- Open.  2015; 1:9. doi: 10.1186/s40798-015-0012-1.

Willmore JH, Costill DL and Kenney W L. Physiology of sports and exercise. Ed: Human Kinetics 2008.

Photo’s:

photo credit: <a href=”http://www.flickr.com/photos/33442021@N00/1673932398″>spitting blood</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

photo credit: <a href=”http://www.flickr.com/photos/65483692@N06/13191313253″>Limassol Marathon, #Cyprus 2014</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-nd/2.0/”>(license)</a&gt;

Should you take extra salt during endurance exercise?

A study by Elizabeth Earhart suggests that taking in extra salt during endurance exercise does not influence your performances. As too much salt can be bad for your health, you might consider abandoning the supplements.5797534694_a36e9d8b0d

Dehydrating too much during exercise is not good for you, as it makes it more difficult to sweat enough to keep your core temperature down. It also means that you have less plasma volume to pump around your body. You have therefore to make sure that you drink enough.

On the other hand, it is important that you keep the amount of electrolytes per litre plasma within normal limits. In practice this means that the concentration of sodium in your blood needs to remain normal. Drinking too much can lead to too little sodium in your blood (hyponatremia), which is usually fatal.

You would therefore conclude that the best you can do is to take sodium supplements with your drinks, but is that true? Unfortunately, scientific studies show contradictory results.

No effect at all

In the latest study, Elizabeth Earhart and her colleagues made 11 trained endurance athletes run or cycle for 2 hours on 2 different days. During one of the workouts the athletes received 1800mg sodium with their water and during the other one none. The researchers could not notice any difference in perceived effort, performance or thermoregulation between the 2 workouts. Two of the athletes however, reported nausea after taking the sodium supplements, and a third one suffered from cramps in the evening after the workout with the supplements.

Of course, this is only a small study and it should be repeated to make sure the results are correct indeed. It is true that other studies have shown different results. The problem is that all those studies use slightly different protocols, which makes it very difficult to compare them.

In a similar study, Cosgrove6062346574_71c0781732 could not find any effect of sodium supplements, but he noted that the athletes were thirstier when using supplements. Although on average there was no difference between the workouts performed with supplements and those without, he observed that some athletes performed better using the supplements. He thought that this might be due to their training status, to the amount of sodium they had from their regular diet or to small differences in metabolism.

The safest solution

Drinking to your thirst is still the safest way to avoid dehydration and hyponatremia. Do not forget that you will get plenty of electrolytes from food.

As your unconscious brain is determined to keep you safe, it will send you the right signal –as long as you are normally healthy- by making you thirsty. It is therefore a good idea to listen to it!

References:

Earhart EL, Weiss EP, Rahman R and Kelly PV. Effects of oral sodium supplementation on indices of thermoregulation in trained, endurance athletes. J Sports Sci Med 2015; 14(1): 172. eCollection 2015.

Cosgrove SD and Black KE. Sodium supplementation has no effect on endurance performance during a cycling time-trial in cool conditions: a randomised cross-over trial. J Int Soc Sports Nutr 2013; 10:30. doi: 10.1186/1550-2783-10-30. eCollection 2013.

Cosgrove SD, Love TD and Black KE. Sodium supplementation during prolonged exercise: effects on plasma sodium and performance. OA Sports Medicine 2013; 1(2):12.

Photo’s

photo credit: <a href=”http://www.flickr.com/photos/57389319@N00/5797534694″>IMG_3934 -1</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by/2.0/”>(license)</a&gt;

photo credit: <a href=”http://www.flickr.com/photos/25874444@N00/6062346574″>Frank Duffy 2011 Ten Mile Road race in the Phoneix Park – Saturday 20th of August 2011</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”https://creativecommons.org/licenses/by-sa/2.0/”>(license)</a&gt;

A happy brain makes you run better

Fatigue during endurance exercise is a weird and complex phenomenon, and scientists are still discussing what influences it. Samuele Marcora’s group has just published an article in Frontiers in Human Neuroscience reporting two experiments studying the effect of visual cues related to happiness and motivation. They showed that such cues can make your unconscious brain think you are working out less hard than you actually are, and that therefore you will keep going for longer.medium_1734834072

Samuele Marcora’s theory about fatigue states that the moment you stop exercising is determined by perceived effort (how hard you think you are working) and potential motivation (the maximal effort you are happy to deliver). This means that you will stop when you are judging that the effort required has become larger than the effort you want to make. This theory is called the psychobiological model of endurance performance. To delay fatigue you could therefore do two things: make the effort seem less important, or increase your motivation.

Our unconscious brain takes in much more information than we realise, especially visually. Only a tiny amount of this information makes it to our conscious attention, but we process all the information unconsciously and it therefore influences our behaviour. To study the impact of the unconscious brain on perceived effort, the researchers therefore set up a study during which they could give participants subliminal visual cues.

In their first experiment 13 participants cycled for as long as they could (i.e. to exhaustion) while looking at a computer screen. They were shown happy or sad faces on a regular basis during the effort, but the images came and went so quickly (in 16 msec) that they did not realise they were seeing them. Every participant performed the experiment twice: once with happy and once with sad faces.

In the second experiment, a well trained competitive endurance athlete cycled 12 times to exhaustion while looking at a screen showing words extremely quickly. The words were encouraging (action, go, lively, energy) during 6 workouts and discouraging (stop, toil, sleep tired) during the other workouts.

In both experiments, the participants cycled significantly longer when exposed to happy faces or encouraging words, and rated the effort as less strenuous. Their mood was not different however, proving that the information had not reached their conscious attention.

Samuele Marcora and his team concluded that these experiments confirm their theory. They also think they provide evidence against the central governor theory of Tim Noakes.

The central governor theory states that your pace, and therefore your fatigue, is determined by your unconscious brain which has to make sure that you get safely over the finish line. According to this theory your pace will thus be determined by “calculations” of your brain based on signals from your body, (e.g. working muscles, glycogen reserves), the environment (temperature, altitude…), but also on messages from your central nervous system, such as motivation, encouragement, knowledge about the course, etc…If you brain is not sure that you will get there safely, it will slow you down –or even stop you- by making you feel tired and reducing the number of muscle fibres you can use.

I am not so sure that the experiments contradict the central governor theory. Is it not likely that subliminal cues would also influence how your brain determines what you can do? Please let us know what you think!

Whatever you think about these theories, it is a good idea to surround yourself by positive images and words, and to smile to every runner you meet.

photo credit: <a href=”https://www.flickr.com/photos/johnhayato/1734834072/”>john hayato</a> via <a href=”http://photopin.com”>photopin</a&gt; <a href=”http://creativecommons.org/licenses/by-nc-nd/2.0/”>cc</a&gt;

 

 

Altitude training for endurance athletes

© Ichtor | Dreamstime Stock Photos
© Ichtor | Dreamstime Stock Photos

There is no doubt that if you want to compete at altitude, you will first have to acclimatize to the lack of oxygen. If not, you will probably not perform as well as you could and you will certainly put your health at risk. However, does training at altitude help you to perform better at sea level? The jury is still out…

Lorenzo Pugliese and colleagues have published the latest article about this question in the September issue of the Journal of Sports Science & Medicine. It is an observational study of two elite endurance athletes, a race walker and a marathon runner, who used altitude training as part of their preparation for the Athens Olympic Games (2004). As both of them obtained gold medals, it must have worked for them, even though we do not know for sure what would have happened if they had stayed at sea level.

Even though altitude training is popular between endurance athletes and coaches, it is still controversial between scientists. In theory it should work of course: as the air pressure is lower at altitude, your body learns how to use oxygen more effectively, what then allows you to perform better when you are back at sea level. The best known effect is an increase in red blood cells, and thus in haemoglobin mass, although there are also adaptations at the level of the muscles and the mitochondria. This increase is triggered by the hormone erythropoietin or EPO, which is produced by the kidneys. However, some people produce less EPO than others and there are therefore important inter-individual differences between the effects of altitude on athletes.

Training hard and altitude

If you want to win endurance races, you need to be able to train at fast paces. Running fast for a long distance is difficult to do at altitude when you are not used to it, as your muscles need more oxygen than you can deliver to them. This is even more so for elite athletes, whose muscles are trained to perform at an optimal level. If you do not train intensively enough for a period of a time, your muscles become detrained, and anything you might have gained by improving your oxygen metabolism will be useless.

While you are acclimatizing, you will face some other problems:

  • Sleeping can be difficult as you are short of breath.
  • As soon as you arrive at altitude, your plasma volume (=the water part of your blood) will decrease, as your body wants to increase the red blood cell concentration and producing new red blood cells takes some time.
  • The air is colder and drier which can easily lead to dehydration.
  • As your muscles cannot extract as much oxygen from your blood as they do at sea level, your VO2max is in effect reduced. Running at the same speed as at sea level will therefore mean working at a higher level of your VO2max, which will feel harder.
  • You are more vulnerable to infections.

All these factors will make it difficult to train at the required level during the acclimatization. Once you are used to the altitude the situation will improve, but in the meanwhile you might have lost valuable time and your legs might have lost speed.

Athletes and coaches have therefore developed live-high-and-train-low camps, whereby they live at altitude and train at lower level. Alternatively, they might do live-low-and-train high camps, whereby they perform some of their sessions at altitude to have an additional training stimulus.

 Olga Vasilkova | Dreamstime Stock Photos
Olga Vasilkova | Dreamstime Stock Photos

Reasons for the controversy

Studies about altitude training contradict each other, whatever formula they use (live-high-and-train-high, live-high-and-train-low or live-low-and-train-high). It is of course possible that athletes and coaches have noted some benefits that are too small to be measured by scientists. As major championships are won or lost by seconds, such very small benefits can make a big difference indeed.

It more likely that the controversy is due to a lack of control groups: in a good study you would compare similar athletes doing the same training at altitude as at sea level, and you would take into account that some people do not react as well as others. In practise such a study is very difficult and expensive to conduct. To complicate matters even further, there could be a placebo effect, as most athletes believe that altitude training is beneficial.

Lorenzo Pugliese’s athletes followed a live-high-and-train-high program. However, they were able to train at the same running/walking pace as at sea level and, according to Pugliese, this is the reason why the camp worked so well for them. Both of them had extensive altitude training experience and that might well have been the reason for their success. Maybe a three week camp so now and then is simply not enough, and you might need to live for a long time at altitude to reap the benefits? This would explain why so many top endurance athletes are born and/or live at altitude. Bad news for all of us who live at sea level though…

References

D M Bailey and B Davies. Physiological implications of altitude training for endurance performance at sea level: a review. Br J Sports Med. 1997; 31:183-190.

L Pugliese, FR Serpiello, GP Millet et al. Training dairies during altitude training camp in two Olympic champions: an observational case study. J Sports Sci Med. 2014; 13(3):666-672. eCollection 2014.

Strength after endurance or endurance after strength training?

All endurance athletes (runners, cyclists, cross-country skiers…) need some strength training. Personally, I prefer to train for endurance and strength on separate days, but for many of us it is more time-effective to combine the two in one session. If that is your case, what do you do first?

© Phil Date | Dreamstime Stock Photos
© Phil Date | Dreamstime Stock Photos

This is an important question, as research has shown that endurance and resistance training lead to different adaptations. Strength training leads to increased muscle mass, while endurance training will allow you to use the available energy and oxygen more effectively and exercise for longer. If you combine both in one session, you will not have any recovery between them and it might be impossible for your body to benefit fully from both. If so, the order in which you do them (first endurance and then strength or the other way around) is important.  Getting it wrong could make a big difference.

Most, if not all, runners I know will start by endurance exercise, and according to Moktar Chtara and his colleagues that is indeed the right thing to do. They divided 48 young men in five groups. The first group performed endurance training only, the second strength training only, the third endurance plus strength and the fourth strength plus endurance workouts. The fifth group did not train and served as a control group. After 12 weeks the endurance plus strength group outperformed every other group during a 4 km run time trial, and their VO2max had improved most.

In the September issue of Medicine & Science in Sports and Medicine however, Moritz Schumann and colleagues published a study suggesting that this does not matter for cyclists. They divided 34 young men in two groups, one of which performed endurance plus strength workouts and the other strength plus endurance. The endurance part of the sessions consisted of cycling, and the strength part of exercises for all the major muscle groups but mainly for the legs.

Both groups improved in strength, VO2max and time to exhaustion, but after 24 weeks there were no significant differences between the groups. The researchers concluded that as endurance cycling is biomechanically similar to many of the strength exercises, they could enhance each other’s effect. Running is of course different.

Surprisingly, Schumann could not notice any significant reduction in body or visceral fat, or in cholesterol levels. Studies whereby the participants perform strength and endurance workouts on separate days on the other hand, typically do show improvements.  The researchers could not really explain this discrepancy: did the participants not train frequently enough (as they did two sessions worth in one go)? Only further studies can figure this out…

In the meanwhile, I’m going to continue planning my endurance and strength workouts in separate days.

References

M Chtara. K Chamari, M Chaouachi et al.  Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005; 39:555-560.

GA Nader. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006; 38(11):1965-1970.

 M Schumann, M Kuusmaa, RU Newton et al.  Fitness and lean mass increases during combined training independent of loading order. Med Sci Sports Exerc. 2014; 46(9): 1758-1768.

A cold drink to exercise in the heat?

Could consuming cold drinks or ice slush during workouts in the heat help you to perform better? Scientists have been wondering this for many years.

Theoretically it makes sense: as your brain’s main objective is to keep you safe, it will force you to slow down or even stop if it presumes that your core temperature could increase to dangerous levels before the end of the workout. Anything that helps you to keep your core temperature down is thus beneficial, and as cold drinks could act as a heat sink they could be helpful indeed. Scientific studies however, have been inconclusive.

© Dnally | Dreamstime Stock Photos
© Dnally | Dreamstime Stock Photos

Florence Riera and her colleagues have just published the latest study about this problem in PlosOne. They compared the effects of a cold (3 C), ice slush (-1 C) or neutral drink (23 C) with or without menthol flavouring on the performances of 12 trained male cyclists in hot and humid conditions.

The cyclists were randomly assigned a beverage and performed a 20 km time trial in the lab, which means that each of them did the test 6 times (once with each beverage). The performance was better using ice slush whatever the aroma, and better with menthol whatever the temperature. Ice slush or cold water with menthol flavouring was therefore the best.

The researchers concluded that a cold or ice slush drink interferes with the rise in core temperature, allowing you to exercise harder without – or with a smaller- increase in core temperature. 

Menthol usually provokes a sensation of freshness, it is a bit stimulating and it improves the airflow (that is why you use menthol lozenges when you have a cold), but exactly how it works is unknown.

Drinking ice slush is probably possible when you are cycling on a turbo trainer or in the gym, but what can you do if you are a road cyclist? You could try to cool down your core in advance, and researchers have shown that ice vests or cool water baths are helpful indeed.

Pre-cooling techniques are usually unavailable for recreational athletes, but cold drinks can easily be obtained before the start of any event. Christopher Byrne and his colleagues therefore wanted to find out if you could pre-cool yourself with cold drinks.

Seven male cyclists ingested 900 ml cold (2 C) or neutral (37 C) water over 35 minutes before cycling as many kilometres as possible for 30 minutes in a lab. When the athletes drank cold water they cycled 2.8% further and their core temperature (as estimated by rectal temperature measurements) was lower at the end of the test. They felt really cold before starting off though, and one of them was even shivering. Most of them needed to urinate before the exercise. Probably not a very pleasant experience….

© Denise Scott Jackson | Dreamstime Stock Photos
© Denise Scott Jackson | Dreamstime Stock Photos

I wonder if this kind of pre-cooling is possible for runners, as such a large amount of fluid is likely to create gastro-intestinal discomfort? I guess that the only thing runners can do is to get acclimatised and to accept that we will be slower…Or do you have a better idea?

References

C Byrne, C Owen, A Cosnefroy et al. Self-paced exercise performance in the heat after pre-exercise cold-fluid ingestion. J Athl Train. 2011; 46(6): 592-599.

 F Riera, TT Trong, S Sinnapath et al. Physical and perceptual cooling with beverages to increase cycle performance in a tropical climate. PLoSONE 9(8): e103718. doi:10.1371/journal.pone. 0103718. (Accessed 09/08/2014).

R Tucker. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br J Sports Med 2009; 43: 392-400.

 Disclaimer: this article is for general information only, and does not replace medical advice. It cannot be used to diagnose or guide treatment. If you have any concerns or questions, you should talk to a qualified health provider.